Aptamer: “smart bomb” facilitates delivery of drugs to the cancer cells

Nirav Patel, Neha Vadgama

Abstract


Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target. They may serve as both drugs and drug-carriers. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment) SELEX and cell-based SELEX (cell-SELEX).  They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we have summarized aptamers, its types, limitations, advantages, in clinical studies and recent applications of DNA and RNA aptamers in cancer theranostics. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for cancers, which might be a powerful tool for cancer treatment. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required.


Keywords


Aptamer, Tumor targeting, Nanoparticle-aptamer conjugate, Case studies, Clinical studies

Full Text:

PDF HTML XML

References


Perkins AC, Missailidis S. Radiolabelled aptamers for tumour imaging and therapy. Q J Nucl Med Mol Imaging. 2007;51(4):292–6.

Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22.

Liu X, Wang F, Aizen R, Yehezkeli O, Willner I. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J Am Chem Soc. 2013;135(32):11832-9.

Yang J, Palla M, Bosco FG, Rindzevicius T, Alstrøm TS, Schmidt MS.. Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping. ACS Nano. 2013;7(6):5350-59.

Noonan P, Roberts R, Schwartz D. Liquid Crystal Reorientation Induced by Aptamer Conformational Changes. J Am Chem Soc. 2013;135(13):5183-9.

Porchetta A, Valla balisle A, Plaxco K, Ricci F. Using Distal-Site Mutations and Allosteric Inhibition To Tune, Extend, and Narrow the Useful Dynamic Range of Aptamer-Based Sensors. J Am Chem Soc. 2012;134(51):20601-4.

Farjami E, Campos R, Nielsen J, Gothelf K, Kjems J, Ferapontova E. RNA Aptamer-Based Electrochemical Biosensor for Selective and Label-Free Analysis of Dopamine. Anal Chem. 2013;85(1):121-8.

Labib M, Zamay A, Kolovskaya O, Reshetneva I, Zamay G, Kibbee R. Aptamer-Based Viability Impedimetric Sensor for Bacteria. Anal Chem. 2012;84(21):8966-90.

Zhou Q, Liu Y, Shin D, Silangcruz J, Tuleuova N, Revzin A. Aptamer-Containing Surfaces for Selective Capture of CD4 Expressing Cells. Langmuir. 2012;28(34):12544-9.

Battig M, Soontornworajit B, Wang Y. Programmable Release of Multiple Protein Drugs from Aptamer-Functionalized Hydrogels via Nucleic Acid Hybridization. J Am Chem Soc. 2012;134(30):12410-3.

Lee S, Kwon Y, Lee J, Choi E, Lee C, Song J. Detection of VR-2332 Strain of Porcine Reproductive and Respiratory Syndrome Virus Type II Using an Aptamer-Based Sandwich-Type Assay. Anal Chem. 2013;85(1):66-74.

Hillery A, Lloyd A, Swarbrick J. Drug delivery and targeting for pharmacists and pharmaceutical scientists. London, Taylor & Francis 2001.

Langer R. Drug Delivery, Drugs on Target. Science. 2001;293(5527):58-9.

Ireson C, Kelland L. Discovery and development of anticancer aptamers. Mol Cancer Ther., 2006;5(12):2957-62.

Proske D, Blank M, Buhmann R, Resch A. Aptamer’s basic research, drug development, and clinical applications. Appl Microbiol Biotechnol. 2005;69(4):367-74.

Levy-Nissenbaum E, Radovic-Moreno A, Wang A, Langer R, Farokhzad O. Nanotechnology and aptamers, applications in drug delivery. Trends in Biotechnology. 2008;26(8):442-9.

Phillips J, Lopez-Colon D, Zhu Z, Xu Y, Tan W. Applications of aptamers in cancer cell biology. Analytica Chimica Acta. 2008;621(2):101-8.

Bouchard P, Hutabarat R, Thompson K. Discovery and Development of Therapeutic Aptamers. Annu Rev Pharmacol Toxicol. 2010;50(1):237-57.

Lee J, Canny M, De Erkenez A, Krilleke D, Ng Y, Shima D. A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proceedings of the National Academy of Sciences. 2005;102(52):18902-7.

Bates P, Laber D, Miller D, Thomas S, Trent J. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol. 2009;86(3):151-64.

Reyes-Reyes E, Teng Y, Bates P. A New Paradigm for Aptamer Therapeutic AS1411 Action, Uptake by Macropinocytosis and Its Stimulation by a Nucleolin-Dependent Mechanism. Cancer Research. 2010;70(21):8617-29.

Sayyed S, Hagele H, Kulkarni O, Endlich K, Segerer S, Eulberg D. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia. 2009;52(11):2445-54.

Darisipudi M, Kulkarni O, Sayyed S, Ryu M. Migliorini A, Sagrinati C. Dual Blockade of the Homeostatic Chemokine CXCL12 and the Proinflammatory Chemokine CCL2 Has Additive Protective Effects on Diabetic Kidney Disease. The American J of Pathology. 2011;179(1):116-24.

Keefe A, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537-50.

Hwang D, Ko H, Lee J, Kang H, Ryu S, Song I. A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer. J Nucl Med. 2009;51(1):98-105.

Fang X, Tan W. Aptamers Generated from Cell-SELEX for Molecular Medicine, A Chemical Biology Approach. Accounts Chem Res. 2010;43(1):48-57.

Zhong Y, Meng F, Deng C, Zhong Z. Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules. 2014;15(6):1955-69.

Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment, RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505-10.

Ellington A, Szostak J. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818-22.

Gold L, Janjic N, Jarvis T, Schneider D, Walker J, Wilcox S. Aptamers and the RNA World, Past and Present. Cold Spring Harbor Perspectives in Biology. 2010;4(3):1-9.

Aurup H, Williams D, Eckstein F. 2'-Fluoro and 2-amino-2'-deoxynucleoside 5'-triphosphates as substrates for T7 RNA polymerase. Biochemistry. 1992;31(40):9636-41.

Beigelman L, McSwiggen J, Draper K, Gonzalez C, Jensen K, Karpeisky A. Chemical Modification of Hammerhead Ribozymes, Catalytic Activity and Nuclease Resistance. J biol chem. 1995;270(43):25702-8.

Eulberg D, Klussmann S, Spiegelmers F. Biostable Aptamers. ChemInform. 2003;34(49):5-12.

Boomer R, Lewis S, Healy J, Kurz M, Wilson C, McCauley T. Conjugation to Polyethylene Glycol Polymer Promotes Aptamer Biodistribution to Healthy and Inflamed Tissues. Oligonucleotides. 2005;15(3):183-95.

Pestourie C, Tavitian B, Duconge F. Aptamers against extracellular targets for in vivo applications. Biochimie. 2005;87(9-10):921-30.

Blank M, Weinschenk T, Priemer M, Schluesener H. Systematic Evolution of a DNA Aptamer Binding to Rat Brain Tumor Microvessels, Selective targeting of endothelial regulatory protein pigpen. J Biol Chem. 2001;276(19):16464-8.

Shawn E, Lupold Brian J, Hicke Yun L, Donald S. Identification and Characterization of Nuclease-Stabilized RNA Molecules That Bind Human Prostate Cancer Cells via the Prostate-Specific Membrane Antigen. Cancer Research. 2012;72(15):3887-7.

Endo K, Nakamura Y. A binary Cy3 aptamer probe composed of folded modules. Anal Biochem. 2010;400(1):103-9.

Duan N, Wu S, Chen X, Huang Y, Xia Y Ma X. Selection and Characterization of Aptamers against Salmonella typhimurium Using Whole-Bacterium Systemic Evolution of Ligands by Exponential Enrichment (SELEX). J Agric Food Chem. 2013;61(13):3229-34.

Mascini M. Aptamers in bioanalysis. Hoboken, N.J., John Wiley & Sons, 2009.

Tan W, Donovan M, Jiang J. Aptamers from Cell-Based Selection for Bioanalytical Applications. Chem Rev. 2013;113(4):2842-62.

Mahlknecht G, Maron R, Mancini M, Schechter B, Sela M, Yarden Y. Aptamer to ErbB-2/HER2 enhances degradation of the target and inhibits tumorigenic growth. Proceedings of the National Academy of Sciences. 2013;110(20):8170-5.

Sullenger B, Gallardo H, Ungers G, Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell. 1990;63(3):601-8.

Pegaptanib in exudative age-related macular degeneration, profile report. Drugs Ther Perspect. 2005;21(12):6-8.

Ng E, Shima D, Calias P, Cunningham E, Guyer D, Adamis A. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123-32.

Ireson C, Kelland L. Discovery and development of anticancer aptamers. Mol Cancer Ther. 2006;5(12):2957-62.

Soundararajan S, Wang L, Sridharan V, Chen W, Courtenay-Luck N, Jones D. Plasma Membrane Nucleolin Is a Receptor for the Anticancer Aptamer AS1411 in MV4-11 Leukemia Cells. Mol Pharmacol. 2009;76(5):984-91.

Soundararajan S, Chen W, Spicer E, Courtenay-Luck N, Fernandes D. The Nucleolin Targeting Aptamer AS1411 Destabilizes Bcl-2 Messenger RNA in Human Breast Cancer Cells. Cancer Res. 2008;68(7):2358-65.

Shieh Y, Yang S, Wei M, Shieh, M. Aptamer-Based Tumor-Targeted Drug Delivery for Photodynamic Therapy. ACS Nano. 2010;4(3):1433-42.

Kim S. Aptamers, Novel Molecules for Future Therapeutics. Biochem Physiol. 2012;1(2):1000e108.

Weinberg M. Therapeutic Aptamers March On. Molecular Therapy—Nucleic Acids. 2014,3,e194.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2015 Pharmaceutical and Biological Evaluations

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



Creative Commons License

 

© Copyright 2018 - Pharmaceutical and Biological Evaluations